CHEMISTRY KCSE PREDICTION 2021

Paper 1

FORM FOUR

Kenya Certificate of Secondary Education 233/1 CHEMISTRY (Theory) PAPER ONE

TIME: 2HRS

For marking schemes call Mr machuki 0795491185

INSTRUCTIONS TO CANDIDATES

- 1. Write your name and admission number in the spaces provided above
- 2. Sign and write the date of examination in the spaces provided
- 3. Electronic calculators may be used.
- 4. All working must be clearly shown where necessary

FOR EXAMINERS USE ONLY

QUESTION	MAXIMUM SCORE	CANDIDATE SCORE
	81-280	

1. The table below shows pH values of solutions ABC and D

Solution	Α	В	С	D
pH value	1	7	10	13

a\) Give	so	lutio	าก	that	is:
u	, OIVC	$^{\circ}$	ıuıı	<i>_</i> ,,,	uiui	10,

i)	Acidic	(1mk)
ii)	Weak base	 (1mk)
iii)	Neutral	 (1mk)
b)	Give the product formed when solution A react with a carbonate salt	

2. The set up below was used to collect gas K produced by the reaction between water and calcium metal

a) Name gas K	(1mk)

- 3. An organic compound P contains 64.9% carbon, 13.5 Hydrogen and the rest of the % is oxygen.
 - a) Determine empirical formula of the compound (3mks)

- b) Determine the molecular formula given that the relative formula mass of P is 74 (1mk)
- 4. The diagram below shows spots of pure substances A, B and D on a chromatography paper. Spot C is that of the mixture.

a) On the diagram show the following

i) Baseline (½mk)

ii) Solvent front (½mk)

b) Which substances are present in C (2mks)

5. In a reaction 20cm³ of 0.1m sodium carbonate completely reacted with 13cm³ of dilute sulphuric (V) acid. Find h concentration of suphuric acid in moles per litres (3mks)

- 6. Using dots (·) and crosses (X) draw the structure of hydroxonium ion (H_3O^+) (2mks)
- 7. Study the information below and answer the questions that follows. Letters do not represent the actual symbol of element.

Ele	ment	Atomic No	Ionization energy kJmol
-----	------	-----------	-------------------------

Р	4	1800
Q	12	1450
R	20	1150

a)	What is the general name given to the group in which element P, Q and (1mk)	R belong?
b)	Explain why P has highest ionization energy	 (2mks)
c)	Write a balanced chemical equation for the reaction between element Q ar	nd water (1mk)
	e diagram below shows catalytic oxidation of ammonia gas. Use it to a estions that follows.	 answer the

a)	Name metal M	(1mk)
b)	State and explain two observations made inside the flask	(2mks)
		•••••

9. In an experiment a gas jar containing some damp iron fillings was inverted in a trough containing some water and the set up was left for 3 days.

8.

a)	Why was iron fillings moistened	(1mk)
b)	State and explain observation made after 3 days (2mks)	
10. a)	Distinguish between hygroscopy and efflorescence	 (2mks)
b)	Starting with lead (II) oxide, describe how you would prepare lead (II) sulph	 ute (3mks)
11. a) 	Define the term isotope	 (1mk)
th	Chlorine gas has a mass of 35.5. It is made up of two isotope ³⁵ ₁₇ Cland ³⁷ ₁₇ Cl e relative abundance of each isotope in the chlorine gas. mks)	. Determine

12. Explain the reason why Aluminium is used for making utensils like sufuria (1mk)

13. Describe a chemical test to differentiate between	carbon (IV) oxide and carbon (II) oxide
gas	
(2mks)	
14.i) State Graham's law of diffusion	(1mk)
ii) 120cm³ of methane gas takes 30 seconds to	diffuse through a certain membrane.
Determine the rate of diffusion of surphure (IV) or	xide gas through the same membrane
(C=12, H=1, S=32, O=16)	(3mks)

15. Study the set up below and answer the questions that follow

Sodium ethanoate +calcium oxide +solid K

i) Name gas Q (1mk)

ii)	Identify solid K		(1mk)
iii)	What is the purpose of calcium oxide in the experiment		(1mk)
16.	Both ions Y ²⁻ and Z ²⁺ have an electron configuration of 2.8.8 a) Write the electron arrangement for: Y	 (½mk) (½mk)	(1mk)
17.	Magnesium ribbon was burnt in air; a) State the observation made (1mk)		
	b) Write the equations for the reaction		(2mks)
18	a) Distinguish between a weak acid and a dilute acid (2mks)		···
10	b) Giving a reason, identify an acid in the reverse reaction below $H_3O+_{(aq)}+NH_{3(g)}$ $\longrightarrow NH_4^++H_2O_{(l)}$ Acid	 (½mk) (½mk)	(2mks)

	nt hardne
Give the structural formula of Q	(1mk)
Name the type of reaction in the equation above (1mk)	
To which family of hydrocarbons does Q belong? (1mk)	
·	••••
	(1mk)
Name allotrope J and K	 (2mks)
	Name the type of reaction in the equation above (1mk) To which family of hydrocarbons does Q belong? (1mk) nsider the scheme below for allotropes of sulphur otrope J Allotrope K What is the significance of temperature 96°C

24. The table below gives the bond energies of some compounds.

Bond	Bond energy kJ/mole
H-H	435
CI-CI	244
H-Cl	431

Calculate the enthalpy change for the reaction $H2_{(g)} + Cl2_{(g)} \longrightarrow 2HCl_{(g)}(3mks)$

25.

The diagram above shows the effect of electric current on lead (II) bromide. Study it and use it to answer the questions that follow.

a) On the diagram, Name electrodes A and B(2mks)

	-)
c) Write the equation that takes place at electrode B (1mk	·)
06 The Proceed of the control of the	•
26. The diagram below represents the apparatus used to prepare and collect dry ammo	nıa
gas. Ammonia chloride and KOI	
Stand - Concentrate Solehonic(vi) acid	
a) State two mistakes in the set up of apparatus (2mk	ːs)
b) Write an equation for the reaction apparatus (2mk	(s)

27. The table below gives the solubilities of potassium bromide and potassium sulphate at 0° C and 40° C.

Substance		Solubility g/100 water at	
	0°C	40°C	
Potassium bromide	55	75	
Potassium sulphate	10	12	

When an aqueous mixture containing 60g of potassium bromide and 7g of potassium		
sul	phate in 100g of water at 80° C was cooled to 0° C, some crystals were form	ned.
i)	Identify the crystals	(1mk)
ii)	Determine the mass of crystals formed	(1mk)
iii)	Name the method used to obtain the crystals	(1mk)

28. Study the diagram below

a)	What is the observation made on anhydrous copper (II) sulphate	(1mk)

b) Write an aqueous for the reaction ,between hydrogen gas and lead (II) oxide (1mk)

c)	What is the property of hydrogen gas being investigated above
	(1mk)

Paper 2

NAME:		ADM
NO:		
CLASS:	DATE:	
SIGN:		

233/1

CHEMISTRY THEORY

FORM FOUR PAPER 2

TIME: 2HOURS

CHEMISTRY THEORY

TIME: 2HRS

INSTRUCTIONS TO CANDIDATES

- 1. Write your name and admission number in the spaces provided above
- 2. Sign and write the date of examination in the spaces provided
- 3. Electronic calculators may be used.
- 4. All working must be clearly shown where necessary

FOR EXAMINERS USE ONLY

QUESTIONS	MAXIMUM SCORE	CANDIDATES SCORE
1	8	
2	10	
3	10	
4	12	
5	10	
6	10	

7	09	
8	11	
	80MARKS	

1. (a) The curves below represent the variation of temperature with time when pure and impure samples of a solid were heated separately.

(i)	(a)Which curve shows the variation in temperature for the pure solid?	Explain. (2mks)
(ii)	State the effect of impurities on the melting and boiling points of a pu	
` '	Melting points	(¹ / ₂ mk)
II	. Boilling points	(¹ / ₂ mk)

.....

(b) The diagram below shows the relationship between the physical states of matter.

i)	Identify the processes B and D
	(2mks)

B.....

D......

ii) Name process A (1mk)

.....

iii) State two substances in chemistry that undergo the process A (1mk)

iv) Is the process E exothermic or endothermic? Explain (1mk)

.....

2. Air was passed through several reagents as shown below

(a	(a) Name the main inactive component of air (1mk)			
(b) Name	the components of air that are removed in the following chambers	(3mks)	
	l.	Chamber 1		
	II.	Chamber 3		
	III.	Chamber 4		
C) W	hat is th	ne purpose of passing air through concentrated sulphuric (1v) acid.	(1mk)	
d) Wr	ite a ch	emical equation for thereaction which takes place in :-		
I.	chaml	per 1	(1mk)	
II.	Cham	ber4	(1mk)	
e) Sta	ate and	explain the observation made in chamber 3 during reaction	(2mks)	
f) Na (1mk)		gas which escapes from the scheme above		

3. (a) Draw and name two isomers of Pentane

(2mks)

(B) Study the flow diagram below and then answer the questions that follow.

C) Describe how burning can distinguish CH₂CH₂ from CH₃CH₃

Υ

(2mks)

С					Т	7
			U			-
X	K	M	Q	w		
	Υ		P		Z	
J						
	tify the element	s in period 1	est atomic radius		(1n 	」 nk) mk:
	a reason, ident		est atomic radius		·····	mk
With	a reason, ident	ify the element with the large			(2ı	mk:

g)	i. Write down the chemical formular of the compound formed between and W	elements k (1mk)
	ii. Draw the bonding in the compound formed in (g) (i) above using crosses (x) to represent electrons	dots (.) and (1mk)
h)	Compare the atomic radius elements X and K. Explain	(2mks)
5	(a) Study the diagram below and answer the questions that follow	
ì	evaluation to the control of the state of th	tras P
i)	Write a chemical equation for the reaction in tube A	(1mk)
ii)	Name the two salts formed in tube B	(1mk)

		••••••••••
iii)	State the observation made in tube C	(1mk)
iv)	What is the purpose of potassium hydroxide in tube D.	(1mk)
v)	Name gas P	 (1mk)
(b) The that foll Nitrog	Air Liquid F	ne questions
	Nitric (V) acid the source of the following raw materials litrogen gas	(½mk)
b) H	lydrogen gas	(½mk)
ii) Name	e the following substances;	
a) (Catalyst P	(½ mk)

b)	Gas M			(½ mk)
c)	Liquid F			(½mk)
iii)Wri	te the chemical e	equations for; formation	of gas M.	(1mk)
The re	eaction in the abs	sorption tower		(1mk)
iv) Sta	ate one use of nit	ric (v) acid		(½mk)
	White Na	Cheme below and answer aOH _(aq) Lead (II) nitrate solution	Sodium	ollow White precipitate P
	Excess Colourless solution Y	White precipitate L Process Colourlesssol ution Z	Process	Colourless solution Q
	te the chemical f	ormular of compounds	P and Q	
				(2mks)
b) Wri (1mk)	-	ion for the process that	produces white precip	oitate P
C) Na	me process 2			(1mk)

d) Name the process that separated P and Q	(1mk)
P	
e) Write a balanced chemical equation for the formation of white precipitate L.	(1mk)
f) State the condition required for process 3	(1mk)
g) What physical process is exhibited in process 3	(1mk)
h) Name the anion present in colourless solution Z	(1mk)
i) Write the formula of the complex ion present in colourless solution Y	(1mk)

7. Below is a set of apparatus that was used to obtain a dry sample of sulphur(iv)oxide gas

- a) Name;
- i) Solid W (1mk)

(ii)The apparatus containing dilute hydrochloric acid								(1mk)		
b) State the role of Liquid Y								••••••	(1mk)	
C) Complete the diagram	to sho	w how t	he gas	could ha	ave bee	n colle	ected		(1mk)	
d) A sample of sulphur(iv	•	_	-		ugh fres	shly pr	repared	d iron(I	II)sulph (2mks	
e) 50cm³ of 2M Hydroch volume of sulphur(iv)oxid	loric a	cid was	used c	luring th	ne abo	 ve exp	erimer	nt. Dete		
8. In an experiment, 40c apparatus and 5.0cm ³ postirred with a thermomet were initially at 20°c	rtions	of hydro	ochloric	acid we	ere add	ed. Th	e resu	lting m	ixture v	was
Volume of HCL (cm³)	5	10	15	20	25	30	35	40	45	
Temperature (°c)	21. 5	22.5	24.0	25.0	26.0	27. 0	27. 5	27.5	27.0	

- a) i. Plot a graph of temperature against volume of the acid added (4mks)
- ii) Use the graph to determine the concentration in moles per litre of the

	hy	drochloric acid	(2mks)
b)	i) Cald	culate the heat change for the reaction	(1½mk)
	ii)	Molar enthalpy of neutralization of hydrochloric acid by sodium solution (density of solution 1g/cm³ specific heat capacity 4.2 kj/kg (1½mks)	
c)	Write	the thermochemical equation for the reaction	(1mks)
d)	Draw	an energy level diagram for the reaction	(1mk)

Paper 3

NAME:	ADM
NO.:	
SCH00L:	SIGNATURE:

FORM 4

PAPER 3 (233/3)

CHEMISTRY (PRACTICAL)

TIE: 21/4 HRS

INSTRUCTIONS

- a) Write your name and index number in the spaces provided above.
- b) Sign and write the data of the examination.
- c) Answer all the questions in the spaces provided.
- d) You are not supposed to start working with the apparatus for the first 15 minutes of 2¼ hours allowed for this paper. This time is meant to read through the paper and ensure you have all the chemicals and apparatus require.
- e) All working must be clearly shown
- f) KNEC mathematical tables and silent electronic calculations may be used.
- g) All questions should be answered in English

FOR EXAMINERS USE ONLY

QUESTIONS	MAXIMUM	CANDIDATE'S SCORE
1	21	
2	11	

3	08	
TOTAL SCORE	40	

QUESTION 1

You are provided with:

- Solid A 5.0g (COOH)₂·×H₂O
- Solution B 0.13M KMnO₄

Task

- a) You are supposed to determine the solubility of A at different temperatures.
- b) Determine the number of moles of water of crystallization in solid A.

PROCEDURE 1

- a) Using a burette, add 4cm3 of distilled water to solid A in a boiling tube.
 - Head the mixture while stirring with the thermometer to about 80°C.
 - When the whole solid dissolves, allow the solution to cool while stirring with the thermometer
 - Note the temperature at which crystals first appear and record this temperature in the table 1 below.
- b) Using aburrete add 2cm³more into the content of the boiling tube and warm until the solid dissolve.
 - Remove from the flame and allow the solution to cool in air while stirring.
 - Record the temperature at which crystal first appear in table 1.
 - Repeat procedure (b) 3 more times and complete table 1 below.
 - Retain the content of the boiling tube for procedure II

Table 1

Volume of water in the	Temperature at which crystals of	Solubility o solid A g/100g
boiling tube (cm³)	solid A appear (°C)	of water
4		
6		
8		

10	
12	

I. a) Draw a graph of solubility of solid A (vertical axis) against temperature (3mks)

b) From your graph determine the solubility of solid A at 60° C (1mk)

PROCEDURE II

- a) Transfer the contents of the boiling tube into a 250ml volumetric flask.
 - Add distilled water up to the mark
 - Label this solution A
- b) Using a clean pipette and a pipette filler, transfer 25ml of solution A into a conical flask.
 - Warm the mixture up to 60°C
 - Fill a burette with solution B
 - Titrate B against the hot solution A until a permanent pink colour persist
 - Read your results in Table 2 below
- c) Repeat (b) 2 more times are record your results in the table 2 below.

TABLE 2

	II	Ш
FINAL BURETTE READING		
INITIAL BURETTE READING		

Edit with WPS Office

OLUME OF SOLUTION B USED CM ³)	
II) a) Calculate the average volume of solution I	B used (1mk)
b) Calculate the number of moles of B used	(1mk)
c) Given 2 moles of Kmno ₄ react with 5 moles in 25cm ³	of A, calculate the number of moles of A (1mk)
d) Calculate the molarity of A	(1mk)
e) Determine the molar mass of A	(1mk)

f) Determine the value of X	(1mk)
(C=12, O=16 H=1)	

QUESTION 2

You are provided with solid C. Use it to carry the test below.

Dissolve the whole of C into 10cm3 of water and divide it into five portions.

a) To the 1st portion add sodium sulphate solution.

Observations	Inferences
(1mk)	(1½mks)

b) To the 2nd portion add Ammonia solution dropwise until in Excess.

Observations	Inferences
1mk)	1mk

c) To the 3rd portion add sodium Hydroxide dropwise until in Excess.

Observations	Inferences
(1mk)	(1mk)

d)	To the	forth	portion	add	Lead	(II)	Nitrate	solution
----	--------	-------	---------	-----	------	------	---------	----------

Observations	Inferences
(½mk)	(2mks)

e)To the last portion add Barium Nitrate solution

Observations	Inferences
(1mk)	(1mk)

QUESTION 3

You are provided with liquid D use it to carry the test below.

Divide liquid D into four equal portions

a) To the 1st portion add sodium hydrogen carbonate

Observations	Inferences
(1mk)	(1mk)

b) To the 2^{nd} portion add acidified potassium manganite (VII) (KmnO $\!\!\!\!^4)$

Observations	Inferences

(1mk)	(1mk)

c) To the 3rd portion add Bromine water

Observations	Inferences
/a 1 \	(4 -1)
(1mk)	(1mk)

d) To the last portion add potassium dichromate(VIO and wrm.

Observations	Inferences
(1mk)	(1mk)