\qquad

INDEX NO.

232/1
PHYSICS
PAPER 1
DECEMBER, 2020
TIME: 2 HOURS.

LANJET JOINT EXAMINATION 2020

Kenya Certificate of Secondary Education.

$$
232 / 1
$$

PHYSICS
PAPER 1
TIME: 2HOURS.

INSTRUCTIONS TO CANDIDATES

- Write your name and your index number in the spaces provided above.
- This paper consists of two sections A and B
- Answer all questions in section \mathbf{A} and \mathbf{B} in the space provided
- All working must be shown in the spaces provided in this booklet.
- Mathematical tables and silent electronic calculators may be used
- This paper consists of 10 printed pages. Candidates should check to ensure that all pages are printed as indicated and no questions are missing

FOR OFFICIAL USE

SECTION	QUESTION	MAX. SCORE	CANDIDATE'S SCORE
A	$1-12$	25	
B	13	09	
	14	15	
	15	10	
TOTAL SCORE			

This paper consists of 10 printed pages. Candidates should check the question paper to ascertain that all pages are printed as indicated and that no pages are missing.

SECTION A 25 MARKS

ANSWER ALL QUESTIONS IN THIS SECTION

1. A micrometer screw gauge is used to measure the thickness of a stuck of 10 microscope slide cover slips. The reading with the cover slips in position is as shown in figure 1.

If the micrometer screw gauge has a negative zero error of 0.01 mm , determine the thickness of each cover slip.
2. Explain whyammonia gas released at the back of a laboratory spreads faster on a hot day than on a cold day. (1mk)
3. A piece of paper is held in front of the mouth and air blown horizontally over the paper, it is observed that the paper get lifted up. Give reason for the observation.
(1mk)
4. (a) Estimate the size of an oil molecule if a drop of oil of volume $6.0 \times 10^{-10} \mathrm{~m}^{3}$ forms a patch of radius 32 cm on a water surface.
(b) Other than oil patch being monolayer, state any one other assumption in the oil drop experiment.
5. In the study of free fall, it is assumed that the force F acting on a given body of mass, m , is gravitational, given by $\mathrm{F}=\mathrm{mg}$. State two other forces that act on the same body.(2mks)
6. The figure below shows a displacement-time graph of the motion of a particle.

Describe the motion of the particle in the region.
(3mks)
i. OA
ii. AB
iii. BC
7. A 60 litre giant density bottle weighs 100 N when empty. What will be its mass when filled with liquid W whose density is $0.72 \mathrm{~g} / \mathrm{cm}^{3} ?(g=10 \mathrm{~N} / \mathrm{kg})$
(3mks)
8. Figure 3 shows a uniform wooden plank which weighs 10 N . The plank is balanced at 0.8 m from one end by a mass of 2.5 Kg .

What is the length of the wooden plank in metres.
(2mks)
9. The figure below shows a force of 40 N acting on a body of mass 4 kg . The coefficient of friction between the surfaces is 0.05 .

Determine the acceleration of the body.
10. State onefactor that affect the spring constant of a spring.
11. A girl in a school in Nakuru plans to make a barometer using a liquid of density $1.25 \mathrm{gcm}^{-}$ ${ }^{3}$. If the atmospheric pressure in the school is $93750 \mathrm{Nm}^{-2}$. Determine the minimum length of the tube that she will require?
12. A form one girl observed that when mercury is put into a glass it does not wet the glass. Explain the observations made by the girl.

SECTION B (55MARKS)

ANSWER ALL QUESTIONS IN THIS SECTION

13. (i) Define Archimedes' Principle.
(ii) An object weighs 1.04 N in air, 0.64 N when fully immersed in water and 0.72 N when fully immersed in a liquid. If the density of water is $1000 \mathrm{~kg} \mathrm{~m}^{-3}$, find:
a. The density of the liquid.
(2mks)
b. Calculate the density of the metal block.
(iii) Calculate the upthrust on the metal and the apparent weight of the metal when completely submerged in salt solution of density $1.2 \mathrm{~g} / \mathrm{cm}^{3}$.
(3mks)
(iv) A blockof metal of volume $80 \mathrm{~cm}^{3}$ weighs 3.80 N in air. Determine its weight when fully sub merged in a liquid of density $1200 \mathrm{kgm}^{-3}$.
(3mks)
14. The following readings were obtained in an experiment to verify Hooke's law using a spring.

Mass (g)	0	25	50	75	100	125
Reading (cm)	10.5	11.5	12.5	13.5	14.4	16.0
Force (N)						
Extension (mm)						

a) Complete the table
(2mks)
b) Plot the graph of extension against force. (5mks)

c) From the graph determine the:
(i) Elastic limit (1mk)
(ii) Spring constant. (2mks)
(b) The set up shows an arrangement to determine the relationship between temperature and pressure of a gas constant volume.

Explain how the result form the experiment can be used to determine the relationship between temperature and pressure.
(c) A bicycle tyre is pumped to a pressure of $2.2 \times 10^{5} \mathrm{pa}$ at $23^{\circ} \mathrm{C}$. After a race the pressure is found to be $2.6 \times 10^{0} \mathrm{pa}$. Assuming the volume of the tyre did not change, what is the temperature of the air in the tyre.
(d) Air is trapped inside a glass tube by a thread of mercury 240 mm long. When the tube is held horizontally the length of the air column is 240 mm .
 constant; calculate the length of the air column when the tube is vertical with open end down.
16. a) A body of mass 20 Kg hangs 4 m and swings through a vertical height of 0.9 m as shown inthe figure 11.

Figure 11
Determine;
i) The potential energy at its position.
ii) The speed of the body when passing through the lowest point.
(2mks)
b) A crane lifts a load of 2000 Kg through a vertical distance of 3.0 m in 6 seconds. Determine the;
i) Work done by the crane.
ii) Power developed by the crane.
iii) Efficiency of the crane given that it is operated by an electric motor rated 12.5 kW .
17. a) Define the term 'heat capacity'.
b) A block of metal of mass 150 g at a $100^{\circ} \mathrm{C}$ is dropped into a well lagged calorimeter of mass 215 g and specific heat capacity $400 \mathrm{JKg}^{-1} \mathrm{~K}^{-1}$ containing 100 g of water at $25^{0} \mathrm{C}$. The temperature of the resulting mixture is $34^{0} \mathrm{C}$. (Specific heat capacity of water $=4200 \mathrm{JKg}^{-1} \mathrm{~K}^{-1}$). Determine; i) Heat gained by calorimeter.
ii) Heat gained by water.
iv) Specific heat capacity of the metal block.
(b) A stone of mass 0.5 kg is attached to a string of length 0.5 m which will break if the tension exceeds 20 N . The stone is whirled in a vertical plane, the axis of rotation being above the ground, as shown in the Figure 10 below.

The angular velocity is gradually increased until the string breaks. At what angular velocity, \boldsymbol{w}, will the string break?

