Name:	Index No
School:	Candidate's Sign.
232/3	
PHYSICS	
PAPER 3	
DECEMBER 2020	
TIME: 2½ HOURS	

LANJET JOINT EXAMINATION 2020

Kenya Certificate of Secondary Education.
232/3
PHYSICS
PAPER 3

TIME: 2½ HOURS.

INSTRUCTIONS TO CANDIDATES:

- Write your name and index number in the spaces provided above.
- Sign and write the **date** of the examination in the spaces provided above.
- You are supposed to spend the first 15 minutes of the 2 ½ hours allowed for this paper reading the whole paper carefully before commencing your work.
- Marks are given for a clear record of the observation actually made, their suitability, accuracy and the use made of them.
- Candidates are advised to record their observations as soon as they are made
- Non-programmable silent electronic calculators may be used.
- Candidates should check the question paper to ascertain that all the pages are printed andthat no questions are missing.

FOR EXAMINER'S USE ONLY.

Question	Maximum score	Candidate's score
1	20	
2	20	
TOTAL	40	

This paper consists of 8 printed pages candidates should check the questions to ascertain that all pages are printed as indicated and that no questions are missing

Page 1 of8

LANJET @DEC 2020 232/3PHYSICS PAPER 3

QUESTION 1 (PART A)

You are provided with the following:

- A watch glass.
- A small piece of plasticine.
- A marble.
- A stopwatch.
- Vernier calipers.
- An electronic balance (to be shared).
- (a) Measure the mass M of the marble.

$$M = \dots g$$
 (½mk)

- (b) Place the watch glass flat on the table with a small piece of plasticine to fix it firmly to the table at the place it touches.
- (c) Release the marble from one end of the watch glass and time 10 complete oscillations with a stop watch. Repeat this three times.

(d) Record your values in table 1 below

Table 1

	Time for 10 oscillations	Periodic time T(s)
1		
2		
3		

(2mks)

Find the average periodic time T.

$$T = \dots S. (\frac{1}{2}mk)$$

(e) Measure the diameter of the marble with the verniercallipers and hence find its radius.

Diameter
$$d = \dots m$$
 (½mk)

Radius
$$r = \dots m$$
 (½mk)

(f) Determine the volume (V) of the marble given that:

$$V = \frac{4}{3}\pi r^3 \tag{1mk}$$

(g) Calculate the radius of curvature of the watch glass R from the formula.

$$R - r = \frac{5gT^2}{7(2\pi)^2} \tag{2mks}$$

Where $g = 9.8 \text{m/s}^2$ and $\pi = 3.142$.

PART B

You are provided with the following

- \checkmark A triangular prism of 60° .
- ✓ Four optical pins
- ✓ A soft board
- ✓ A plain piece of paper

Proceed as follows

- (a) Place the plain sheet of paper on the soft board
- (b) Place the prism with one face on the plain paper and trace its outline.
- (c) Remove the prism from the plain sheet of paper.

(d) Mark angle A and record its value.

A =(1mk)

- (e) Draw a normal as shown and draw a ray of incident on the normal at an angle of incidence of 30° .
- (f) Replace the prism on the outline on the sheet.
- (g) Stick two pins P₁ and P₂ along the path of the incident ray as shown in the diagram.
- (h) View the images of P_1 and P_2 through the glass prism through face AC as shown on the diagram.
- (i) Stick two pins P_3 and P_4 so that they appear to be in line with P_1 and P_2 as seen through the glass prism.
- (j) Remove the pins and prism from the sheet. Trace the path of the ray until it emerges from the glasses shown in the diagram.
- (k) Extend the incident ray and the emergent ray until they meet at P. Measure and record the angle of deviation d.
- (l) Repeat the experiment for other angles of incidence shown in the table.

Angle of incidence (i) ⁰	30	35	40	45	50	55	60
Angle of deviation (d) ⁰							

(3 marks)

- (m) Plot a graph of angle of deviation (d) 0 against angle of incidence (i) 0 . (5 marks)
- (l) Present your working.

LANJET @DEC 2020 232/3PHYSICS PAPER 3 (n) From the graph determine the minimum angle of deviation D.

(1 marks)

(p) Find the refractive index of the prism material using

(3 marks)

$$n = \frac{\operatorname{Sin} \frac{(A+D)}{2}}{\operatorname{Sin} \left(\frac{A}{2}\right)}$$

QUESTION 2

PART A

- 1. You are provided with the following apparatus.
 - Two dry cells.
 - Nichrome wire 100cm on a mm scale.
 - An ammeter.
 - Cell holder.
 - Voltmeter.
 - Connecting wires with crocodile clips.
 - Switch.

Proceed as follows;

a) Connect the circuit as shown in the diagram.

b) Connect the ends A and C where AC is the length L of the Nichrome wire across the terminals as shown. Close the switch and measure both current I and potential difference (P.d) across the wire AC when L = 100cm.

$$P.d, V = \dots (1 \text{ mark})$$

c) Measure the E.m.f of the cells, E.

$$E = \dots (1 \text{ mark})$$

d) Reduce the length L (AC) to the lengths shown in the table below. In each case record the current, I, and the corresponding P.d.

Length L (cm)	100	70	60	50	40	20
I (A)						
P.d (V)						
E-V(v)						

(6 marks)

e) Plot a graph of E - V against I(A) on x-axis in the grid provided.

(5 marks)

f) Given that E = V + Ir, determine the internal resistance, r, of each cell. (3 marks)

LANJET @DEC 2020 232/3PHYSICS PAPER 3 Page 8 of8