FORM 2 TERM 3 OPENER

PHYSICS

NAME \qquad ADM/NO. \qquad CLASS \qquad

TIME: 2HRS

INSTRUCTION TO CANDIDATES

a) Write your name, admission number and class in the spaces provided above
b) This paper consists of TWO Sections; Section Aand Section B.
c) Answer ALL the questions in both Section \mathbf{A} and \mathbf{B} in the spaces provided.
d) ALL working MUST be clearly shown.
e) Candidates should check the question paper to ascertain that all the 8 pages are printed as indicted and that no questions are missing.
f) Candidates should answer the questions in English

Where necessary, take
$\mathrm{G}=10 \mathrm{~N} / \mathrm{kg}$
Density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$

SECTION A (25 MARKS)

Answer all questions in the spaces provided

1. The figure below shows a scale which is part of vernier calipers. What is the reading indicated by the scale?

2. Two mirrored walls stand at an angle to each other. A student standing in the room counts nine images of himself in the mirrors. Determine the angle between the walls
(3mks)
3. The diagram below shows the behavior of mercury in a capillary tube. Explain this observation

4. A body weighs 600 N on the surface of the earth and 450 N on the surface of another planet. Calculate the value of g in that planet (g on the earth $=10 \mathrm{~N} / \mathrm{Kg}$)
(3mks)
5. A steel needle when placed carefully on water can be made to float. When a detergent is added to the water it sinks. Explain this observation
6.
7. 200 coulombs of charge passes through a point in a circuit for 0.6 minutes. What is the magnitude of the current flowing?
8. When marking the fixed points on a thermometer it is observed that at $0^{\circ} \mathrm{C}$, the mercury thread is of length 1 cm and 6 cm at $100^{\circ} \mathrm{C}$. What temperature would correspond to a length of 4 cm ?
9. The micrometer screw gauge below has a zero error of -0.19 mm .

Determine the actual thickness of the object.
10. Distinguish between hard magnetic material and a soft magnetic material
11. In the smoke cell experiment, bright specks are observed to move in a continuous random manner. Explain this motion.
12. State the reason why a steel sphere resting on a horizontal surface is said to be in neutral equilibrium

KCSEPDF.CO.KE

SECTION B (55 MARKS)

13. (a) State Hooke's law
(1mk)
(b) In an experiment to verify Hooke's law, a piece of rubber was fixed to a rigid support and the other end pulled with a force of ranging magnitude. The values of force and the extension were recorded as in the table below:-

Force (N)	0	0.20	0.55	0.75	1.00	1.30	1.40
Extension(cm)	0	1.5	2.5	3.5	4.5	6.0	7.0

(i) Plot a graph of force (Y axis) against extension (X-axis) on the gird provided
(5mks)

(i) From the graph, determine the spring constant of the rubber within elastic limit
(ii) What is the size of force at the elastic limit
(c) Three identical springs A, B and C of negligible weight are connected as shown below:

The springs support a load of 60 N . If the spring constant of each is $150 \mathrm{~N} / \mathrm{m}$, determine the total extension of the springs
14. (a) State the Pascal's principle
(b) The height of a mercury barometer at a particular place is 70 cm . given that the density of mercury is $13600 \mathrm{kgm}^{3}$, determine;
(i) The atmospheric pressure at the place.
(ii) The height of a water barometer at the same place. (Density of water $=1 \mathrm{~g} / \mathrm{cm}^{3}$)
(iii) Give a reason why mercury is preferred as a barometric liquid.
(1mks)
(c) Calculate the minimum pressure a block of dimensions $3 \mathrm{~cm} * 10 \mathrm{~cm} * 15 \mathrm{~cm}$ and mass 12 kg could exert on a horizontal surface.
15. (a)In an experiment to determine the diameter of an oil molecule, an oil drop of radius 0.02 cm was placed in a tray of water in which lycopodium powder had been sprinkled oil drop spread to a circular patch of radius of 0.2 cm

Determine
(i) The volume of the oil drop
(ii) The area of the patch
(iii) Diameter of the oil molecule
(b) state two assumptions made in the experiment above.
16. (a) What property of light is suggested by the formation of shadows?
(1mk)
(b) A building standing 200 m from a pinhole camera produces on the screen of the camera an image 2.5 cm high 5.0 cm behind the pinhole.
Determine the actual height of the building
(c) An object of height 2.0 cm is placed 5.0 cm in front of a convex mirror of focal length 10.0 cm
(i) On the grid provided,draw to scale a ray diagram to locate the position of the image.(4mks)
(ii) Calculate the magnification produced by the mirror.
17. (a) State the principle of moments
(b) The figure below shows a uniform metre rule of mass 300 g acted upon by a number of forces.

Determine;
(i) Sum of clockwise moments(leave your answer in terms of W)
(ii) Sum of anticlockwise moments
(iii)The force W

KCSEPDF.CO.KE

18. The figure below shows an electromagnet

(i) Explain why the cord is made up of iron and not steel (2mks)
(ii) On the same diagram indicate the direction of the current flow when the switch is closed
(iii) When current is allowed to flow, the electromagnet becomes magnetized. Identify the poles of the magnet
A. \qquad
B. \qquad
(iv) State three factors that affect the strength of the electromagnet
